Regulation of high-affinity nitrate transporter genes and high-affinity nitrate influx by nitrogen pools in roots of barley.
نویسندگان
چکیده
To investigate the regulation of HvNRT2, genes that encode high-affinity NO(3)(-) transporters in barley (Hordeum vulgare) roots, seedlings were treated with 10 mM NO(3)(-) in the presence or absence of amino acids (aspartate, asparagine, glutamate [Glu], and glutamine [Gln]), NH(4)(+), and/or inhibitors of N assimilation. Although all amino acids decreased high-affinity (13)NO(3)(-) influx and HvNRT2 transcript abundance, there was substantial interconversion of administered amino acids, making it impossible to determine which amino acid(s) were responsible for the observed effects. To clarify the role of individual amino acids, plants were separately treated with tungstate, methionine sulfoximine, or azaserine (inhibitors of nitrate reductase, Gln synthetase, and Glu synthase, respectively). Tungstate increased the HvNRT2 transcript by 20% to 30% and decreased NO(3)(-) influx by 50%, indicating that NO(3)(-) itself does not regulate transcript abundance, but may exert post-transcriptional effects. Experiments with methionine sulfoximine suggested that NH(4)(+) may down-regulate HvNRT2 gene expression and high-affinity NO(3)(-) influx by effects operating at the transcriptional and post-transcriptional levels. Azaserine decreased HvNRT2 transcript levels and NO(3)(-) influx by 97% and 95%, respectively, while decreasing Glu and increasing Gln levels. This suggests that Gln (and not Glu) is responsible for down-regulating HvNRT2 expression, although it does not preclude a contributory effect of other amino acids.
منابع مشابه
High-affinity nitrate transport in roots of Arabidopsis depends on expression of the NAR2-like gene AtNRT3.1.
The NAR2 protein of Chlamydomonas reinhardtii has no known transport activity yet it is required for high-affinity nitrate uptake. Arabidopsis (Arabidopsis thaliana) possesses two genes, AtNRT3.1 and AtNRT3.2, that are similar to the C. reinhardtii NAR2 gene. AtNRT3.1 accounts for greater than 99% of NRT3 mRNA and is induced 6-fold by nitrate. AtNRT3.2 was expressed constitutively at a very low...
متن کاملThe Arabidopsis nitrate transporter NRT2.4 plays a double role in roots and shoots of nitrogen-starved plants.
Plants have evolved a variety of mechanisms to adapt to N starvation. NITRATE TRANSPORTER2.4 (NRT2.4) is one of seven NRT2 family genes in Arabidopsis thaliana, and NRT2.4 expression is induced under N starvation. Green fluorescent protein and β-glucuronidase reporter analyses revealed that NRT2.4 is a plasma membrane transporter expressed in the epidermis of lateral roots and in or close to th...
متن کاملIN BRIEF A Nitrate Transporter for Both Roots and Shoots
Nitrogen availability is often a limiting factor in plant growth and crop productivity, but the application of nitrogen fertilizers to counteract nitrogen deficiencies can have detrimental economic and environmental effects. Therefore, it is important to understand mechanisms of nitrogen uptake, transport, and utilization within the plant. The most common form in which nitrogen is assimilated b...
متن کاملIN BRIEF A Nitrate Transporter for Both Roots and Shoots
Nitrogen availability is often a limiting factor in plant growth and crop productivity, but the application of nitrogen fertilizers to counteract nitrogen deficiencies can have detrimental economic and environmental effects. Therefore, it is important to understand mechanisms of nitrogen uptake, transport, and utilization within the plant. The most common form in which nitrogen is assimilated b...
متن کاملKnockdown of a rice stelar nitrate transporter alters long-distance translocation but not root influx.
Root nitrate uptake is well known to adjust to the plant's nitrogen demand for growth. Long-distance transport and/or root storage pools are thought to provide negative feedback signals regulating root uptake. We have characterized a vascular specific nitrate transporter belonging to the high-affinity Nitrate Transporter2 (NRT2) family, OsNRT2.3a, in rice (Oryza sativa ssp. japonica 'Nipponbare...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Plant physiology
دوره 123 1 شماره
صفحات -
تاریخ انتشار 2000